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Abstract— Merge trees are a type of topological descriptors that record the connectivity among the sublevel sets of scalar fields.
They are among the most widely used topological tools in visualization. In this paper, we are interested in sketching a set of merge
trees using techniques from matrix sketching. That is, given a large set 7 of merge trees, we would like to find a much smaller set of
basis trees S such that each tree in 7 can be approximately reconstructed from a linear combination of merge trees in S. A set of
high-dimensional vectors can be approximated via matrix sketching techniques such as principal component analysis and column
subset selection. However, until now, there has not been any work on sketching a set of merge trees. We develop a framework for
sketching a set of merge trees that combines matrix sketching with tools from optimal transport. In particular, we vectorize a set of
merge trees into high-dimensional vectors while preserving their structures and structural relations. We demonstrate the applications of
our framework in sketching merge trees that arise from time-varying scientific simulations. Specifically, our framework obtains a set of
basis trees as representatives that capture the “modes” of physical phenomena for downstream analysis and visualization.

Index Terms—Merge trees, matrix sketching, topology in visualization, ensemble analysis
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1 INTRODUCTION

Topological descriptors such as merge trees, contour trees, Reeb graphs,
and Morse—Smale complexes serve to describe and identify characteris-
tics associated with scalar fields, with many applications in the analysis
and visualization of scientific data (e.g., see the surveys [37,42]). Ma-
trix sketching [69], on the other hand, is a class of mathematical tools
that approximate a large data matrix with smaller and sparser matri-
ces [24]. Principal component analysis (PCA) [54], for example, is a
type of matrix sketching. We are interested in applying matrix sketch-
ing techniques to a set of topological descriptors, specifically merge
trees, for scientific visualization.

We formulate our problem as follows: given a large set 7 of merge
trees, we would like to find a much smaller set of basis trees S such
that each tree in 7 can be approximately reconstructed from a linear
combination of trees in S. The set 7 may arise from a time-varying
field or an ensemble of scientific simulations generated with varying
parameters and/or different instruments. We aim to develop a merge
tree sketching framework that:

* Identifies good representatives that capture topological variations
in a set of merge trees as well as outliers; and

* Obtains a compressed representation of a large set of merge trees
as a much smaller set of basis trees together with a coefficient
matrix for downstream analysis and visualization.

A sketch of 7 with S gives rise to a significantly smaller representation
of 7. Elements in S will serve as good representatives of 7, whereas
elements with large sketching errors will be considered as outliers.

The ability to extract a basis set of merge trees is important for
numerous applications, for which scientists are interested in detect-
ing the “modes” of physical phenomena. This extraction could be
achieved by computing a basis set, matching merge trees to the basis
set, and computing the errors of each input tree w.r.t. that basis set.
‘We could potentially uncover repeated phenomena that provide deep
phenomenological insight. Our framework could recover cyclical phe-
nomena for time-varying data or derive consensus sets for ensembles.
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* We combine tools from optimal transport with matrix sketching
techniques to give a class of algorithms for sketching a set of
merge trees. This is the first time matrix sketching is applied to a
set of topological descriptors.

* We introduce a new distance between merge trees by adapting the
Gromov-Wasserstein distance [18,47,55] in optimal transport.

* We provide experimental results that demonstrate the utility of
our framework in sketching merge trees that arise from scientific
simulations. Specifically, we show that understanding how a set
of merge trees is approximated by a smaller set can be particularly
useful for the study of time-varying scalar fields and ensembles,
where our framework can be used to obtain compact representa-
tions for downstream analysis and visualization. The basis set
extracted from matrix sketching can serve as good representatives
in detecting the modes of physical phenomena.

Our framework offers an exciting direction of utilizing randomized
linear algebra for topological descriptors in visualization.

2 AN OVERVIEW AND A PRIMER ON MATRIX SKETCHING

Data sketching is powerful in the analysis of massive datasets [44] and
has enjoyed diverse and exciting advances in recent years. A sketch is
a compressed mapping of the full dataset onto a smaller data structure
that serves as a summary that retains certain properties of interest.
A sketch is typically “easy to update with new or changed data and
allows certain queries whose results approximate queries on the full
dataset.” [56]
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Fig. 1: The overall pipeline for sketching a set of merge trees.
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Fig. 2: Rotating Gaussian: Visualizing a time-varying mixture of Gaussian functions (left) together with their corresponding merge trees (right).
Merge trees at time step 4 and 7 are selected as the representatives to describe the topology of the ensemble.

We are inspired by the idea of matrix sketching. A sketch of a matrix
A is another matrix B that is significantly smaller than A, but still
approximates it well [41]. Many matrix sketching techniques build
upon numerical linear algebra and vector sketching. A set of high-
dimensional vectors is sketchable via matrix sketching techniques such
as principle component analysis (PCA) and column subset selection
(CSS), as illustrated in Fig. 1 (gray box).

Given a dataset of N points with d features, represented as a d x
N matrix A (with row-wise zero empirical mean), together with a
parameter K, PCA aims to find a k-dimensional subspace H of R¢
that minimizes the average squared distance between the points and
their corresponding projections onto H. For every column vector &
of A, PCA finds a k-dimensional embedding y; (a column vector of
Y) along the subspace H to minimize ||A — A|2 = [|JA —BY |2. B
basis for H. Y isa k x N coefficient matrix, whose column y; encodes
the coefﬁciglts for approximating a; using the basis from B. That is,
a ~ 84 = J-kzl QYj;i :

Another technique we discuss is CSS, whose goal is to find a small
subset of the columns in A to form B such that the projection error of
A to the span of the chosen columns is minimized, that is, to minimize
[[A—A||2 = ||A—BY ||2, where we restrict B to come from columns
of A. Such a restriction is important for data summarization, feature
selection, and interpretable dimensionality reduction [8]. Thus, with
PCA or CSS, given a set of high-dimensional vectors, we could find a
set of basis vectors such that each input vector can be approximately
reconstructed from a linear combination of the basis vectors.

Now, what if we replace a set of high-dimensional vectors by a
set of objects that encode topological information of data, specifically
topological descriptors? Until now, there has not been any work on
sketching a set of merge trees. In this paper, we focus on merge trees,
which are a type of topological descriptors that record the connectivity
among the sublevel sets of scalar fields. We address the following
question: Given a large set 7 of merge trees, can we find a much
smaller basis set S as its “sketch”?

Our overall pipeline is illustrated in Fig. 1 and detailed in Sec. 6. In
steps 1 and 2, given a set of N merge trees 7 = {T1;T2;---;Tn }
as input, we represent each merge tree T; as a measure network and
employ the Gromov-Wasserstein framework of Chowdhury and Need-
ham [18] to map it to a column vector & in the data matrix A. In
step 3, we apply matrix sketching techniques, in particular, column
subset selection (CSS), to obtain an approximated matrix A, where
Ax~A=BxY.In step 4, we convert each column in A into a merge
tree (referred to as a sketched merge tree) using minimum spanning
trees (MST). Finally, in step 5, we return a set of basis merge trees
S by applying MST to each column by in B. Each entry Yj; in the

coefficient matrix Y defines the coefficient for basis tree S; in approxi-
mating T;. With the above pipeline, given a set of merge trees, we could
find a set of basis trees such that each input tree can be approximately
reconstructed from a linear combination of the basis trees.

3 A SIMPLE MOTIVATIONAL EXAMPLE

Before we dive into the technical details of our approach, we give a
motivational example. A time-varying scalar field is generated as a
mixture of 2D Gaussian functions that translate and rotate on the plane.

tree T; is computed from —f;; thus, its leaves correspond to the local
maxima (red), internal nodes are saddles (white), and the root is the
global minimum (blue).
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Fig. 3: Rotating Gaussian: Visualizing data matrices associated with the
sketching, and the coefficient matrix.

We now apply matrix sketching to 7 using our pipeline described
in Fig. 1. Since the dataset is quite simple, a couple of basis trees
are sufficient to obtain very good sketching results. Using k = 2, we
employ Iterative Feature Selection (IFS) — a type of column subset
selection algorithm — from the matrix sketching toolbox. The algorithm
produces a set of two basis trees, S = {T4; T7}, which are highlighted
with green boxes together with their corresponding scalar fields in Fig. 2.
The topological structures of these two basis trees are noticeably distinct
among the input trees. They clearly serve as good representatives of
the entire set 7 and capture the structural variations.

We further visualize the data matrix A, A , B, and highlight the coef-
ficient matrix Y in Fig. 3 (cf. the gray box in Fig. 1). Y shows that each
input tree (column) is well represented (with high coefficient) by one of
the two basis trees. In particular, columns in the coefficient matrix with
high (yellow or light green) coefficients (w.r.t. the given basis) may be



grouped together, forming two clusters {To; T3; Ta; Ts; Te; T10; T11 }
and {T1; T2; T7; Tg; To } whose elements look structurally similar.

4 RELATED WORK

Comparing merge trees.Merge trees record the connectivity among
the sublevel sets of scalar fields (e.g., [6,14]). They are rooted in Morse
theory [52], which characterizes scalar field data by the topological
changes in its sublevel sets at isolated critical points. A number of
recent works focus on comparing merge trees and their variants (e.g., [6,
31,57,60,67,68]); see [72] for a survey. Recently, Pont et al. proposed
a Wasserstein distance between merge trees [57] that equals to the
L 2-Wasserstein distance between persistence diagrams. Wetzels et
al. proposed variants of edit distances [67, 68] that are independent
from branch decomposition trees.

In this paper, we treat merge trees as measure networks and introduce
a Gromov-Wasserstein (GW) distance between merge trees based on
optimal transport (Sec. 5). See Appendix E for a comparison with the
Wasserstein distance [57]. Different from previous distances between
merge trees, the GW distance is easy and efficient to compute, and
provides explicit structural correspondences between the trees (Sec. 6).
Our main focus is to use the GW distance to obtain alignments and vec-
tor representations of merge trees that interface with matrix sketching.
Gromov-Wasserstein distances.Gromov introduced Gromov-
Hausdorff (GH) distances [34] while presenting a systematic treat-
ment of metric invariants for Riemannian manifolds. GH distances
can be employed as a tool for shape matching and comparison
(e.g., [11,45,46,49,50]), where shapes are treated as metric spaces,
and two shapes are considered equal if they are isometric. Memoli [47]
modified the formulation of GH distances by introducing a relaxed
notion of proximity between objects, thus generalizing GH distances to
the notion of Gromov-Wasserstein (GW) distances for practical consid-
erations. Since then, GW distances have had a number of variants based
on optimal transport [62,63] and measure-preserving mappings [48].
Apart from theoretical explorations [47,61], GW distances have been
utilized in the study of graphs and networks [38,70,71], machine learn-
ing [12,28], and word embeddings [4]. Recently, Memoli et al. [51]
considered the problem of approximating metric spaces using GW dis-
tance. Their goal was to approximate a (single) metric measure space
modeling the underlying data by a smaller metric measure space. The
work presented in this paper instead focuses on approximating a large
set of merge trees — modeled as a set of metric measure networks — with
a much smaller set of merge trees.
Aligning and averaging graphs.Graph alignment or graph matching
is a key ingredient in performing comparisons and statistical analysis
on the space of graphs (e.g., [27,35]). It is often needed to establish
node correspondences between graphs of different sizes. Edit distances
have been used to align contour trees [43]. The approaches that are
most relevant here are the ones based on the GW distances [18, 55],
which employ probabilistic matching (“soft matching”) of nodes. Infor-
mation in a graph can be captured by a symmetric positive semidefinite
matrix that encodes distances or similarities between pairs of nodes.
Dryden et al. [25] described a way to perform statistical analysis and
to compute the mean of such matrices. Agueh et al. [3] considered
barycenters of several probability measures, whereas Cuturi et al. [20]
and Benamou et al. [7] developed efficient algorithms to compute such
barycenters. Peyre et al. [S5] combined these ideas with the notion
of GW distances [47] to develop GW averaging of distance/similarity
matrices. Chowdhury and Needham [18] built upon the work in [55]
and provided a GW framework to compute a Frechét mean among these
matrices using measure couplings. In this paper, we utilize the GW
framework [18] for probabilistic matching among merge trees.
Vectorizing topological descriptors. A number of recent works trans-
form topological descriptors from data into feature vectors to be used
as input to machine learning models; see [39] for a survey. A primary
focus is on vectorizing persistence diagrams. Adams et al. introduced
persistence images [2] that transform persistence diagrams into 2D im-
ages for classification tasks. Carriere et al. [16] used mappings between
points in persistence diagrams to construct vector representations. A
neural network layer was also used to embed persistence diagrams in

vector spaces [15].

Our framework generates vectorized representations of merge trees

using optimal transport to be interfaced with matrix sketching. Differ-
ent from previous work, the vectorized merge trees preserve structural
correspondences and there exist explicit mappings between pairs of
merge trees. In addition, we can reconstruct input merge trees from
basis trees, that is, we can reverse engineer merge trees from their vec-
tor representations. A number of previous works also utilize the latent
representations of inputs from neuron networks as high-dimensional
vector representations. However, these approaches often require exten-
sive training and often do not generalize well across diverse datasets.
In comparison, our approach is generalizable and does not require
training.
Matrix sketching. Many matrix sketching techniques [56, 69] build
upon linear algebra and vector sketching. For simplicity, we formulate
the problem as follows: Given a d x N matrix A, we would like to
approximate A using fewer columns, as a d X k matrix B such that
A and B are considered to be close with respect to some problem
of interest. Basic approaches for matrix sketching include truncated
singular value decomposition (SVD), column or row sampling [22,23],
random projection [59], and frequent directions [33,41]; see [56,69]
for surveys.

The column sampling approach carefully chooses a subset of the
columns of A proportional to their importance, where the importance
is determined by the squared norm (e.g., [22]) or the (approximated)
leverage scores (e.g., [23]). The random projection approach takes
advantage of the Johnson-Lindenstrauss (JL) Lemma [40] to create an
N X k linear projection matrix S (e.g., [59]), where B = AS. The
frequent directions approach [33,41] focuses on replicating properties
of the SVD. The algorithm processes each column of A at a time while
maintaining the best rank-k approximation as the sketch.

5 TECHNICAL BACKGROUND

We begin by reviewing the notion of a merge tree that arises from a
scalar field. We then introduce the technical background needed to
vectorize a merge tree as a column vector in the data matrix.

Fig. 4: An example of a merge tree from a height function. From left to
right: 2D scalar field visualization, a merge tree embedded in the graph
of the scalar field, and an abstract visualization of a merge tree as a
rooted tree equipped with a height function.

Merge trees.Letf : M — R be a scalar field defined on the domain
of interest M, where M is a subset of R? in our context. Merge trees
capture the connectivity among the sublevel sets of f, i.e., Ma =
f 1(—o0;a]. Two points X;y € M are equivalent, denoted by X ~ Yy,
if f(x) = f(y) = a, and x and y belong to the same connected
component of a sublevel set Ma. The merge tree, T(M;f) = M=~,
is the quotient space obtained by gluing together points in M that are
equivalent under the relation ~.

To construct a merge tree, we sweep the function value a from —oo
to oo, and create a new branch originating at a leaf node for each
local minimum of f . As a increases, such a branch is extended as its
corresponding component in M, grows until it merges with another
branch at a saddle point. If M is connected, all branches eventually
merge into a single component at the global maximum of f , which
corresponds to the root of the tree. For a given merge tree, leaves,
internal nodes, and root node represent the minima, merging saddles,
and global maximum of f, respectively. Fig. 4 displays an example.
Abstractly, a merge tree T is a rooted tree equipped with a scalar
function defined on its node set, f : V — R.

Gromov-Wasserstein distance for measure networksOur frame-
work utilizes tools from optimal transport, specifically, the GW distance



between measure networks. The GW distance was proposed by Mem-
oli [46,47] for metric measure spaces. Peyre et al. [55] introduced the
notion of a measure network and defined the GW distance between
such networks. The key idea is to find a probabilistic matching between
a pair of networks by searching over the convex set of couplings of the
probability measures defined on the networks.

In our context, a finite merge tree T can be represented as a measure
network using a triple (V; p; W), where V is the set of n nodes, p is
a probability measure on V, and W is an n X n matrix capturing the
relations between pairs of nodes. For our experiments, p is taken to be
uniform, that is, p = nlln ,where 1, =(1;1;:::; l)T € R". W may
encode adjacency or shortest path relations (see Sec. 6).

Let T1(V1;p1;W1) and T2(V2; p2; W2) be a pair of merge trees

Vi = {Xi}iz(n,) and Vo = {Yj }j2[n,]- A coupling between probabil-
ity measures P1 and P> is a joint probability measure on V1 X Vo> whose
marginals agree with p1 and p>. That is, a coupling is represented as
an Ny X N2 non-negative matrix C such that each row sums up to 1=n;
and each column sums up to 1=ny. The distortion of a coupling C with
an arbitrary loss function L is defined as [55]

£(C)= L(W1(i;k);W2(j;1))Cij Ciat - (D)
ik 2[nalil 2[n2]

Let C = C(p1;p2) denote the collection of all couplings between p1
and p2. The Gromov-Wasserstein discrepancy [55] is defined as

D(C) = rrC1|2nC E(C): 2)
In this paper, we consider the quadratic loss function L (a;b) =

%|a — b|2. The Gromov-Wasserstein distance [18,47,55] dew between
Ty and T3 is defined as

1 . X
dow (T1;T2) = > min
ik 2[n1]iil 2[n2]
IW1(isk) — Wa(j;1)[?Cij Cu : ?3)

It follows from the work of Sturm [61] that such minimizers always
exist and are referred to as optimal couplings.
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Fig. 5: An optimal coupling between two merge trees T1 and T>. The
coupling matrix is visualized in (A): yellow means high and dark blue
means low probability. Couplings between the Fréchet mean T with Ty
and T2 are shown in (B) and (C), respectively.

We give a simple example involving a pair of merge trees in Fig. 5
(top). T1 and T> contain 8 and 6 nodes, respectively, where nodes are

labeled starting with a O index. The optimal coupling C is shown below
and visualized in Fig. 5 (A):
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C is an 8 x 6 matrix, and it shows, for instance, that node 0 in T; is
matched to node 0 in T with the highest probability. Node 2 in Ty is
matched probabilistically with both node 0 and node 1 in T».
Alignment and blowup [18]. Given a pair of merge trees T1 =
(V1;p1; W1) and T2 = (V2; p2; W2) with n1 and nz nodes, respec-
tively, a coupling C € C(p1; p2) can be used to align their nodes. In
order to do this, we will need to increase the size of T1 and T» agpro—
priately into their respective blowup trees T{ and T2, such that T and
T2 contain the same n number of nodes (where n1; N2 < n).

Roughly speaking, let X be a node in Ty, and let nx be the number
of nodes in T> that have a nonzero coupling probability with X. The
blowup tree T = (VL pd; W) is created by making nx copies of node
x for each node in T, generating a new node set V. The probability
distribution p? and the weight matrix W{ are updated from p; and Wi
accordingly. Similarly, we can construct the blowup T2 = ( V2 p3; W3)
of T2. An ogtimal coupling C between p; and p expands naturally to a
coupling C® between p{ and pJ. After taking appropriate blowups, (o
is now an N X N matrix which can be used to align the nodes of the two
blowup trees. With a bijective node alignment, we can permute C° to
be a diagonal matrix whose marginals agree with pd and p3 respectively.
Since Cis a diagonal matrix, we have p = p3 = diag(C?). Finally,
C° can be binarized to be an N x N permutation matrix (e.g., it has
1 where C° > 0, and 0 elsewhere). The GW distance is given by
a formulation equivalent to Eqn. (3) based on an optimal coupling,
following [18, Definition 2]:

1X o . Lo
dow (TEiT2)= 5 [W2i]) — W2 PRIRG): )
i
Fréchet mean.Given a collection of merge trees 7 = {T1;:::;Tn },

a Fgéchet mean T of T is a minimizer of the functional F (H; 7) =

Ni iN:1 dew (Ti;H) over the space N of measure networks [18],

-1
T=min —
N N

mn dGW (Ti ) H )Z (5)

i=1

Chowdhury and Needham [18] defined the directional derivative and
the gradient of the functional F (H; 7) at H and provided a gradient de-
scent algorithm to compute the Fréchet mean. Their iterative optimiza-
tion begins with an initial guess Ho of the Fréchet mean. At the k™ iter-
ation, there is a two-step process: each T; is first blown up and aligned
to the current Fréchet mean, Hy; then Hy is updated using the gradient
of the functional F (H; 7") at Hk. Such a two-step process is repeated
until convergence where the gradient vanishes. For the complete algo-
rithmic and implementational details, see [18]3 KT =(V:p;W)is
the Fréchet mean, then we have W (i;j ) = Ni ,’:‘zl W2(3i;j ); where
Wki is the weight matrix obtained by blowing up and aligning Tx € T
to T. That is, when all trees in 7 are blown up and aligned to T, the
weight matrix of T is given by a simple elementwise average of the
weight matrices of the merge trees.

In the example shown in Fig. 5 (bottom), we compute the Fréchet
mean T of Ty and T, which has 12 nodes. We align both T; and T2
to T via their blowup trees. This alignment gives rise to a coupling
matrix between T and Ty (of size 12 x 8) in Fig. 5 (B), and a coupling
matrix between T and T2 (of size 12 x 6) in Fig. 5 (C), respectively. As
shown in Fig. 5, root node 0 of T is matched probabilistically with root



node 0 of T1 and root node 0 of T,. Nodes 2 and 7 of T are matched
probablhstlcallgf with node 1 in T1. Now both T1 and T» are blown up
to be T and T, each with 12 nodes, and can be vectorized into column
vectors of the same size.

6 METHODS

Given a set 7 of N merge trees as input, our goal is to find a basis set S
with k < N merge trees such that each tree in 7 can be approximately
reconstructed from a linear combination of merge trees in S. We
propose to combine the GW framework [18] with techniques from
matrix sketching to achieve this goal. We detail our pipeline to compute
S, as illustrated in Fig. 1.

Step 1: Representing merge trees as measure networKshe first
step is to represent merge trees as measure networks, as described
in Sec. 5. Each merge tree T € T can be represented using a triple
(V;p; W). In this paper, we define p as a uniform distribution on V,
and W as a shortest path distance matrix.

Recall that each node X in a merge tree is associated with a scalar
value f (x). For a pair of nodes x;x° € V, if they are adjacent, we
define W (x;x% = [f(x) —f (x9], i.e., their absolute difference in
function value; otherwise, W (X; X ") is the shortest path distance be-
tween them in T. By construction, the shortest path between two nodes
goes through their lowest common ancestor in T. The node set of a
merge tree is equipped with a function f ; therefore, we define W in
such a way to encode information from f .

Step 2: Merge tree vectorization via alignment to the Fréchet mean.

The second step is to convert each merge tree into a column vector of
the same size via blowup and alignment to the Fréchet mean.

Having represented each merge tree as a measure network, we can
u%e the GW framework to compute a Fréchet mean of 7, denoted as

( V;p;W). Letn = |V|. In theory, N may become as large
as i=1 [Vi]. In practice, n is chosen to be much smaller. In our
experiment, we choose N to be a small constant factor (e.g., 2 or 3) times
the size of the largest input tree. The optimal coupling C between T
and T; is an n X n; matrix with at least N nonzero entries. If the number
of nonzero entries in each row is greater than 1, we keep only the largest
value. That is, if a node of T has a nonzero probability of coupling
with more than one node of T, we consider the mapping with only
the highest probability, so that each coupling matrix C has exactly n
nonzero entries. We then blow up each T; to obtain T? = (V% p% W?9),
and align T with T . The above procedure ensures that each blowup
tree T has exactly n nodes, and the binarized coupling matrix c?
between T and T? induces a node matching between them.

We can now vectorize (i.e., flatten) each Wio (an N X N matrix) to

form a column vector & € RY of matrix A (where d = n?), as illus-
trated in Fig. 1 (step 2). In practice, d = ( n + 1) n=2 as we store only
the upper triangular matrix. Each a; is a vector representation of the
input tree T; w.r.t. the Fréchet mean T. Different from previous vec-
torization techniques, this process preserves (interpretable) structural
correspondences between the vector and the tree.
Step 3: Merge tree sketching via matrix sketchingThe third step is
to sketch merge trees by applying matrix sketching to the data matrix
A, as illustrated in Fig. 1 (step 3). By construction, A is a d x N matrix
whose column vectors a; are vector representations of T;. We apply
matrix sketching techniques to approximate A by A=BxY.In
our experiments, we use two linear sketching techniques from column
subset selection (CSS). See Appendix B for implementation details.

Using CSS, the basis set is formed by sampling Kk columns of A.
Let B denote the matrix formed by kK columns of A andlet = BB*
denote the projection onto the k-dimensional space spanned by the
columns of B. The goal of CSS is to find B such that ||A — A|[f is
minimized. We experiment with two variants of CSS.

In the first variant of CSS, referred to as Length Squared Sampling
(LSS), we sample (without replacement) columns of A with proba-
bilities ¢ proportional to the square of their Euclidean norms, i.e.,
G = |la||3=||A]|2 . We modify the algorithm slightly such that before
selecting a new column, we factor out the effects from columns that are
already chosen, making the chosen basis as orthogonal as possible.

In the second variant of CSS, referred to as the Iterative Feature
Selection (IFS), we use the algorithm proposed by Ordozgoiti et al. [53].
Instead of selecting columns sequentially as in LSS, IFS starts with a
random subset of k columns. Then each selected column is either kept
or replaced with another column, based on the residual after the other
selected columns are factored out simultaneously.

Step 4: Reconstructing sketched merge treegor the fourth step,
we convert each column in A as a sketched merge tree. Let A= BY,
where matrices B and Y are obtained using CSS. Let & = “8; denote
the i™ column of A. We reshape & as an N x N weight matrix We.
We then obtain a tree structure T° from W ° by computing its minimal
spanning tree (MST). In particular, we treat WPOasa pair-wise distance
matrix, and the MST constructed from WO connects all the nodes and
minimizes the sum of edge weights.

Step 5: Returning basis treesFinally, we return a set of basis merge
trees S using information encoded in the matrix B . Using CSS, each
column by of B corresponds directly to a column in A; therefore, the
set S is trivially formed by the corresponding merge trees from 7.
Error analysis. For each experiment, we compute the global sketch
= ||A — AJ|2, as well as column-wise sketch error | = ||a; —
a; Hz, where = IN _; i. By construction, ; < . For merge trees,
we measure the GW dlstance between each tree T; and its sketched
version 'ﬁ ,thatis ; = dew (Ti; f ), referred to as thepcolumn wise
GW loss. The global GW loss is defined to be = -, i. For

i
theoretical considerations, see discussions in Appendix A.

error

7 EXPERIMENTAL RESULTS

We demonstrate the applications of our sketching framework with
merge trees that arise from three 2D and one 3D time-varying datasets
from scientific simulations. The key takeaway is that, by applying
matrix sketching, a large set 7 of merge trees is replaced by a much
smaller basis set S such that trees in 7 are well approximated by trees
in S. Elements in the basis set S serve as good representatives that cap-
ture structural variations among the time instances, thus reflecting the

“modes” of the underlying physical phenomena (Sec. 7.1 and Sec. 7.2).

In addition, our framework also uncovers cyclical behavior of time-
varying datasets that exhibit periodicity (Sec. 7.3 and Appendix C.1).
See Appendix C for additional results and runtime analysis.

In practice, we simplify the scalar fields based on persistence before
computing the merge trees. See Appendix B for details.
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Two of our datasets come from numerical simulations available on-
line [1]. The first dataset, referred to as the Heated Cylinder with
Boussinesq Approximation (Heated Cylinder in short), comes from
the simulation of a 2D flow generated by a heated cylinder using the
Boussinesq approximation [36, 58]. The dataset shows a time-varying
turbulent plume containing numerous small vortices. We convert each
time instance of the flow (a vector field) into a scalar field using the
magnitude of its vertical (y) velocity component. We generate a set of
split trees (i.e., the merge tree surrounding local maxima) from these
scalar fields based on 31 time steps, which correspond to steps 600-630
from the original 2000 time steps. This set captures the evolution of
small vortices over time.

Parameter. To choose the appropriate K number of basis trees for this
dataset, we use the “elbow method” to determine K, similar to cluster
analysis. We plot the global GW loss and global sketch error as a
function of K, and pick the elbow of the curve as the K to use. As shown
in Fig. 6, k is chosen to be three for the Heated Cylinder dataset. In
subsequent sections, element-wise GW losses and sketch errors also
reaffirm this choice (cf., Fig. 8).

Given 31 merge trees T = {To;:::; T30 } from the Heated Cylinder
dataset, we apply two types of column subset selection (CSS) methods,
namely IFS and LSS to obtain a set of basis trees S and reconstruct the
sketched trees. Since we are using CSS, the basis trees are elements
from the original input. We first demonstrate that the basis trees capture
structural variations among the time-varying input. We then investigate

Heated Cylinder Dataset



Fig. 6: Heated Cylinder: Global GW losses and global sketch errors for
varying k, the number of basis trees, using IFS and LSS.
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Fig. 7: Sketching the Heated Cylinder dataset with three basis trees
using IFS: (A) basis trees where orange circles highlight topological
changes w.r.t. nearby basis trees, (B) scalar fields that give rise to these

basis trees. Areas with critical points appearances/disappearances are
shown with zoomed views in (C).

the coefficient matrix and show that with only three basis trees, we can
obtain sketched trees with small errors.

Basis trees as representatives with IFSNe first illustrate our sketch-
ing results using IFS. Based on our error analysis (Fig. 6), three basis
trees appear to be the appropriate choice that strikes a balance between
data summarization and structural preservation.

As shown in Fig. 7(A), IFS produces three basis trees, S =
{T3; T12; T20 }, which capture noticeable structural variations among
the input merge trees. Specifically, moving from T3 to T12 and Ti2
to T2o, a saddle-maxima pair appears in the merge trees, respectively
(highlighted by orange circles). These changes in the basis trees reflect
the appearances of critical points in the domain of the time-varying
fields; see Fig. 7(B). In Fig. 7(C), we highlight (with orange balls) the
appearances of these critical points in the domain. That is, from T3 to
T12, critical points X and y appear in the scalar fields, whereas from
T12 to Tao, critical points U and Vv appear. Therefore, the three basis
trees capture structural changes in the time-varying data, thus reflecting
the “modes” of the underlying phenomena. Such “modes” are also
confirmed with the coefficient matrix (see Fig. 8), which is a byproduct
of the sketching process.

Coef cient matrices with IFS. The coefficient matrix, column-wise

sketch error, and GW loss are used to guide our investigation into
the quality of individual sketched trees, see Fig. 8. Trees with small
GW losses or sketch errors are considered well sketched w.r.t. the
chosen basis. The coefficient matrix in Fig. 8(B) contains a number
of yellow or light green blocks, indicating that consecutive input trees
share similar coefficients w.r.t. the chosen basis; therefore, they are
grouped together into three clusters, reflecting the three modes of the
underlying phenomena. Such a blocked structure indicates that the
chosen basis trees are good representatives of the clusters.

In comparison, using just two basis trees (T3 and T22) does not cap-
ture the structural variations as well as three basis trees. In Fig. 8(C),
we see a slight degradation in the blocked structure and thus the sketch-
ing quality using two basis trees. In particular, trees in the red area of
Fig. 8(D) (Tg to T14) are not well approximated due to a missing basis

tree.
® o

Sketch error

IFS: 3 basis trees

Coe ! cient matrix

GW loss

Sketch error
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Fig. 8: Sketching the Heated Cylinder dataset with three (A-B) and two
(C-D) basis trees using IFS. (A, C) column-wise sketch error and GW
loss, (B, D) coefficient matrix. Orange boxes highlight basis trees.
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IFS: 2 basis trees
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Fig. 9: Heated Cylinder: Coefficient matrices and basis trees used to
sketch the dataset with three basis trees using LSS.

Fig. 10: Corner Flow: Global GW losses and global sketch errors for
varying k, the number of basis trees, using IFS and LSS.

Sketching with LSS. Additionally, we include the sketching results
using LSS as an alternative strategy, again with three basis trees accord-
ing to the “elbow method” (Fig. 6). LSS gives basis trees T2; T10 and
To7 in Fig. 9, which are similar to the ones obtained by IFS (Fig. 7).
In other words, for the Heated Cylinder dataset, variations in column
selection methods do not affect the quality of sketching results.



Fig. 11: Sketching the Corner Flows dataset with 15 basis trees with IFS: (Top) rst 6 basis trees where orange circles highlight topological changes
w.r.t. near basis trees, (Bottom Left) scalar elds that give rise to these basis trees, areas with critical points appearances/disappearances are shown
with zoomed views in (Bottom Right).

7.2 Corner Flow Dataset

The second dataset, referred to as@yénder Flow Around Corners
(Corner Flowin short), arises from the simulation of a viscous 2D
ow around two cylinders [5,58]. The channel into which the uid is
injected is bounded by solid walls. A vortex street is initially formed at
the lower left corner, which then evolves around the two corners of the
bounding walls. We generate a set of merge trees from the magnitude
of the velocity elds of 100 time instances, which correspond to steps
801-900 from the original 1500 time steps. This dataset describes the
formation of a one-sided vortex street on the upper right corner.

Parameter.Using the “elbow method”, we choo&e= 15 (see Fig. 10).

Given a set ofLl00 merge trees, we rst demonstrate that a se1 ®f

basis trees chosen with IFS gives sketched trees with a small erggy, 12: sketching the Corner Flow dataset with 15 (A, B) and 10 (C, D)
based on the coef cient matrices and error analysis. basis trees using IFS. (A, C) column-wise sketch error and GW loss, (B,
Coef cient matrices with IFS. We rst compare the coef cient ma- D) coef cient matrix. Orange boxes highlight basis trees. Red boxes in
trices generated using IFS, far = 10; 15, respectively. Compar- (D) indicate trees that are better sketched with 15 basis trees.

ing Fig. 12(A) and (C), we see generally improved column-wise G .
loss and sketch error using 15 instead of 10 basis trees. Furtherm fES Serve as good cluster representatives, as they are roughly selected

the coef cient matrix with 15 basis trees (B) contains better block struene’ per_blo_ck. . .
tures than the one with 10 basis trees (D). In particular, using additionalVe highlight the structural changes among the rst 6 adjacent basis

basis trees improves upon the sketching results in regions encloseél'rﬁgS in Fig. 11 Top (green boxes). We further highlight critical points
red boxes in (D). involved in these structural changes in the domain (Fig. 11 Bottom Left)

with zoomed views in Fig. 11 (Bottom Right). For instance, moving

Basis trees as representativedlVe thus report the sketching result o : : :
with 15 basis trees under IFS. The basis trees are selected with Iab:EO F;I(:; tlol-r(l.ﬁ)’g)q-zc:rl]g%ztzxng?g%t?gﬁ]esirgwhg'lgj ?dcvl d|(sjappear,

12, 21, 25, 28, 32, 36, 40, 48, 53, 60, 65, 74, 81, 92; see Fig. 12(B) and
the rst 6 basis trees in Fig. 11(Top). Similar to thieated Cylinder
we observe noticeable structural changes among pairs of adjacent b
trees, which lead to a partition of the input trees into clusters wite demonstrate the use of our method in distinguishing and summa-
similar structures; see the block structure in Fig. 12(B). Thus the basiging different types of ow behavior using a ow behind a square
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