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Abstract—Sequence describes the primary structure of a protein, which contains important structural, characteristic and genetic
information and thereby motivates many sequence-based computational approaches to infer protein function. Among them,
feature-base approaches attract increased attention because they make prediction from a set of transformed and more biologically
meaningful sequence features. However, original features extracted from sequence are usually of high dimensionality and often
compromised by irrelevant patterns, therefore dimension reduction is necessary prior to classi cation for ef cient and effective protein
function prediction. A protein usually performs several different functions within an organism, which makes protein function prediction a

problem. In machine learning, multi-label classi cation deals with problems where each object may belongs to
more than one classes. As a well-known feature reduction method, linear discriminant analysis (LDA) has been successfully applied in
many practical applications. It, however, by nature is designed for , in which each object can belongs to exactly
one class. Because directly applying LDA in multi-label classi cation causes ambiguity when computing scatters matrices, we apply a
new Multi-label Linear Discriminant Analysis (MLDA) approach to address this problem and meanwhile preserve powerful classi cation
capability inherited from classical LDA. We further extend MLDA by �1-normalization to overcome the problem of over-counting data
points with multiple labels. In addition, we incorporate biological network data using Laplacian embedding into our method, and assess
the reliability of predicted putative functions. Extensive empirical evaluations demonstrate promising results of our methods.

Index Terms—Protein function prediction, multi-label classi cation, linear discriminant analysis.

✦

1 INTRODUCTION

SEQUENCE is the most fundamental form to describe a
protein since it determines different characteristics of

the protein such as its sub-cellular localization, structure
and function. As a result, protein sequences have been
heavily utilized to develop in silico approaches for automatic
function prediction, which can be broadly categorized into
the following three classes [1].

Homology-based approaches have demonstrated their use-
fulness together with the success of the sequence-sequence
comparison systems such as FASTA [2] and BLAST (Basic
Local Alignment Search Tool) [3], [4]. However, because a
duplicate of an gene could adopt a new function in response
to selective pressure during evolution [5], function transfer
by homology on such gene and its product could produce
erroneous results [6].

Subsequence-based approaches focus on seeking the most
informative segments in protein sequences, such as motifs
[7] and functional domains [8], because often only specific
parts of a whole sequence are crucial for the protein to
perform its functions. Treating these subsequences as fea-
tures of a protein, these approaches construct models for
the mapping of the features to protein functions and use the
trained model to predict the function of a query protein [9],
[10], [11].
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Feature-based approaches. Subsequence-based approaches
predict protein function from protein sequences in their raw
form, i.e. as a string of characters. However, it is possible to
transform these sequences into more biologically meaning-
ful features, which makes it easier to distinguish between
proteins from different functional classes [12]. With this
recognition, feature-based approaches use standard classi-
fication algorithms to learn models of functional classes
from the transformed set of features, and then utilize these
models to make predictions for uncharacterized proteins
[13], [14], [15], [16].

Adopting the perspective of feature-based approaches,
in this paper we learn from protein sequences a prediction
model to transform the extracted sequence features into
a discriminative subspace, in which the classification, i.e.,
function prediction, can be carried out more effectively with
less computational complexity.

2 MATERIALS AND METHODS

Predicting protein function from sequence involves two
types of data, i.e., protein sequences and the corresponding
function annotations. Therefore, we first formulate these
two types of data and formalize the protein function pre-
diction problem.

2.1 Construction of feature vector for protein sequence
Sequence is a string of amino acids and depicts the primary
structure of a protein. Traditional computational approaches
make use of sequences to assess the similarity among pro-
teins via sequence alignment algorithms, which attempt to
match the amino acid strings to satisfy certain criteria: either
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locally or globally. Numerous pairwise sequence alignment
algorithms [17] and multiple sequence alignment algorithms
[18] have been devised for each criterion. However, we have
not yet notice any literature addressing the issue which cri-
terion and which algorithm is optimal for protein function
prediction. Moreover, genes evolve at different rates due to
both uneven selection pressure on their functions and the
inherent mutation rate of different species, which means
that it is difficult to establish a similarity measure that is
reliable in all cases. Rodents, for example, accumulate point
mutations more rapidly than apes, and the evolutionary
rates of proteins in different gene families may vary by
several orders of magnitude. Therefore, independent from
using sequence alignment, a more robust and effective way
to quantify sequence is expected.

Considering the fact that a protein sequence is a string of
characters (amino acids), we may use the bag-of-words model
[19] in information retrieval to extract sequence features
from the statistical point of view. In this model, a text, such
as a sentence or a document, is represented as an collection
of words. In the same way, a protein sequence can also
be represented by a set of predefined terms. In the context
of sequence analysis, k-mers are the most natural term set
and largely used in many biological applications. k-mers
consider k consecutive nucleotides (in DNA) or amino acids
(in protein) as a unit, and their frequency, also called as
distribution, are often used to characterize sequences. In
this work, we use trimer (k = 3) as a descriptor for protein
sequence which treats any three consecutive amino acids as
a term.

Using trimers as terms, protein function prediction is
analogous to document query, where a protein sequence is
equivalent to a document in a text collection (all the protein
sequences). We use tf-idf (term frequency-inverse document
frequency) weight [20] to build the vector descriptions,
xi ∈ R

p, for proteins. This weight is broadly used in infor-
mation retrieval, and statistically evaluates how important
a term is with respect to a document in a collection.

Because there are 20 amino acids to constitute protein
sequences, the dimensionality of xi is p = 203. We sort
the trimers in the standard amino acid order, and denote
tfi,j as the term frequency of the jth trimer appearing in
the ith protein sequence. For example, because “Q” is the
7th amino acid and “S” is the 16th one, “QQS” is the
(7−1)×20×20+(7−1)×10+16 = 2536th trimer and its term
frequency in the ith protein is denoted as tfi,2356. Given a
sample sequence as “AANEQQSANEQQSN”, tfi,2356 = 2.
Clearly, the value of tfi,j correlates to the length (the total
number of amino acids) of a protein. In general, a long
protein would have a large value of tfi,j , which complicates
the comparison between two different proteins. We hence
normalize tfi,j to solve this problem as following:

ntfi,j =
tfi,j∑
j tfi,j

, (1)

where
∑

j tfi,j computes the number of occurrences of
all trimers in the ith protein sequence. Therefore, ntfi,j
measures the importance of a trimer in one individual
protein, which, though, still suffers from a critical problem:
all trimers are considered equally important when measur-
ing pairwise protein similarities. In fact, however, certain

terms have little or no discriminating power in determining
relevance, which is same as that in document query. For
instance, the stop words, such as “the” and “this”, almost
appear in every document in a collection, from which
we can not determine the document category. In contrast,
specific terms, such as “stock”, usually only appear in the
documents related to finance in the collection and is clearly
more useful for category determination. To this end, we
use inverse document frequency to measure the general
importance of a trimer in the whole sequence data collection
as:

idfj = log
n

dfj
, (2)

where n is the number of all the proteins, and dfj is the
number of proteins in which the jth trimer appears (i.e. the
number of proteins with tfi,j �= 0). Finally, the tf-idf weight
is defined as:

tf-idfi,j = tfi,j × idfj , (3)

which is the jth component of xi, i.e., xi(j) = tf-idfi,j .
The protein sequence data used in this work are obtained

from GenBank [21].

2.2 Function annotation data
We first use functional catalogue (FunCat) [22] for protein
function annotation. FunCat is an annotation scheme for
the functional description of proteins from prokaryotes,
unicellular eukaryotes, plants and animals. Taking into ac-
count the broad and highly diverse spectrum of known
protein functions, FunCat (version 2.1) consists of 27 main
functional categories that cover general fields such as cellu-
lar transport, metabolism, cellular communication, etc. The
main branches exhibit a hierarchical and tree-like structure
with up to six levels of increasing specificity. 17 main func-
tion categories in FunCat annotation scheme are involved in
annotating yeast genome as listed in Table 1. Together with
the sequence data, we end up with 4403 annotated proteins
and 1988 unannotated proteins for Saccharomyces cerevisiae
species.

Besides, we also use Gene ontology (GO) [23] to annotate
the proteins. GO is a major bioinformatics initiative to
unify the representation of gene and gene product attributes
across all species, whose annotation categories covers three
domains: cellular component, molecular function, and bio-
logical process. Following [24], we use the functional terms
in molecular function and biological process.

2.3 Problem formalization and multi-label protein func-
tion prediction
Using protein sequences and the corresponding function
annotations as input, we formalize protein function pre-
diction as a classification problem with n training data
points, m test data points and K target classes. A protein
is characterized as a data point and the functions are treated
as target classes. Each data point xi is associated with
a set of labels represented by a binary indicator vector
yi ∈ {0, 1}K such that yi(k) = 1 if data point xi be-
longs to the kth class, and 0 otherwise. Given a labeled
data set {(x1,y1), . . . , (xn,yn)}, the goal is to predict la-
bels for the unlabeled data points {xi}

m+n
i=n+1. We write

X = [x1, . . . ,xn], and Y = [y1, . . . ,yn]
T .
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TABLE 1
Main functional categories in FunCat annotation scheme (version 2.1)
and the corresponding number of annotated proteins to yeast species.

ID Function Description Size

01 Metabolism 1397
02 Energy 336
10 Cell Cycle and DNA Processing 981
11 Transcription 1009
12 Protein Synthesis 476
14 Protein Fate 1125
16 Protein with Binding Function 1019
18 Regulation of Metabolism and Protein Function 246
20 Transport Facilitation and Transport Routes 995
30 Cellular Communication and Signal Transduction 231
32 Cell Rescue, Defense and Virulence 515
34 Interaction with the Environment 446
38 Transposable Elements, Viral and Plasmid Proteins 59
40 Cell Fate 268
41 Development 67
42 Biogenesis of Cellular Components 827
43 Cell Type Differentiation 437

Necessity of feature reduction on input data. By formal-
izing protein function prediction as a classification problem,
many classification algorithms in machine learning can be
applied to infer protein functions. However, two problems
prevent us from directly using xi for classification. First, the
dimensionality of the input data, p = 203, is relatively high,
which significantly increases the computational complexity
of the classification algorithms and makes the classification
tasks computationally intractable due to “the curse of di-
mensionality” [25]. Second and more important, not all the
features (trimers in current classification problem) are nec-
essary for the classification. Same as classification problems
in many other applications such as information retrieval
and data mining, the class memberships only correlate to
some patterns of much lower dimensionality hidden in
the original data, and many of the features are irrelevant
and sometimes even harmful. Therefore, feature reduction
to reduce dimensionality and prune irrelevant information
is necessary prior to classification. Among various feature
reduction methods in statistical learning, Linear Discrimi-
nant Analysis (LDA) [25] is a well known and widely used
method to learn a discriminative transformation from the
original high-dimensional space to a subspace with desired
low dimensionality, in which the input data points from
different classes are well separated.

Multi-label function prediction and its difficulties to
use LDA. Because different regions of a protein sequence
have different structural and functional characteristics, a
protein usually performs multiple functions [8]. Therefore
protein function prediction is a multi-label classification prob-
lem [26], [27]. Multi-label classification is an emerging topic
in machine learning driven by the advances of modern
technologies in the past two decades, in which each object
may belongs to more than one classes. Therefore, although
LDA has been applied successfully in many applications, it
can not be directly used to predict protein function, because
it is by nature a single-label classification method. Single-label
classification refers to the traditional classification tasks in
machine learning where each object belongs to exactly one

class. The main difficulty to apply classical LDA to multi-
label classification is how to measure the inter and intra
class scatters. In single-label classification, data points are
exclusively partitioned into several groups, hence the data
scatters are naturally measured by the geometrical disper-
sion of the data points in the hyperspace. However, in multi-
label case, because the partitions of data points overlap
from one another, one data point could belong to different
classes. Therefore, how much a data point with multiple
labels should contribute to the between-class and within-
class scatters remains unclear. By recognizing this, in this
paper we apply the Multi-label Linear Discriminant Analy-
sis (MLDA) approach proposed in our earlier work [26] to
solve this problem by constructing the scatter matrices from
class perspective, such that the scatter matrices are explicitly
defined. We further extend MLDA by �1-normalization to
overcome the problem of over-counting the data points with
multiple labels in scatter matrices calculation.

Framework to predict protein function using MLDA.
Using MLDA, we learn a transformation Up×r from the
training data {(xi,yi)}

n
i=1 to project the input data point

xi into a discriminative subspace as qi ∈ R
r , where r is

the dimensionality of the subspace and empirically selected
as r = K − 1. In order to make use of the network data
accumulated in various high-throughput technologies, we
formulate them as graphs and convert them into vector
form using Laplacian embedding [28]. Consequently, each
protein acquires a description, pi, from network data. By
concatenating the two transformed feature vectors for a
protein, qi and pi, we obtain a hybrid description zi, by
which we conduct classification to predict protein function.
In this work, we use K-nearest neighbor (KNN) method [25]
(K = 1 in our implementation, which is abbreviated as 1NN
in our paper.) due its simplicity and clear intuition. The key
insight here is that, the hybrid descriptor zi has a relatively
small number of dimensions so that the classification can be
computed efficiently. Moreover, because the discriminability
of the data points in the projected subspace is enhanced
by MLDA, together with the reinforcement using network
data, the classification can be carried out more effectively.
As another important contribution of this work, motivated
by the computation process of MLDA, we propose to use
the distance from a data point to the centroid of its predicted
class to assess the reliability rank for a putative protein func-
tion, which is of great value for post-proteomic processes in
biological experiments. We outline the framework to predict
protein function using MLDA as in Table 2. In this work,
and we focus on MLDA for feature reduction as it is the
most essential part for a quality classification.

3 MULTI-LABEL LINEAR DISCRIMINANT ANALYSIS
FOR MULTI-LABEL CLASSIFICATION
Because the original feature vectors, xi, computed from
protein sequence as in Section 2.1 is of high dimensionality
and often non-discriminable, feature reduction is necessary
for efficient and effective classification to infer protein func-
tion. As an successful feature reduction method in many
practical applications, classical LDA, however, is by nature
devised for single-label classification. To address this, in this
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TABLE 2
Outlines to predict protein function using MLDA approach

Input:
(a) Compute feature vector xi for each protein sequence (§2.1).
(c) Construct label indicator yi using annotation data (§2.2).

Multi-label protein function prediction using MLDA:
(a) Compute projected feature vector qi for each protein from xi

using MLDA or NMLDA algorithm (§3).
(b) Compute embedded feature vector pi for each protein from

network data using Laplacian embedding (§4).
(c) Construct the hybrid feature vectors zi by Eq. (21).
(d) Classify unannotated proteins (zi)

n+m

i=m+1
by annotated pro-

teins (zi,yi)
n

i=1 using KNN method, one function at time.

Output:
(a) Predicted functions for unannotated proteins, (yi)

n+m

i=n+1
. One

protein could acquire more than one putative functions.
(b) The reliability rank for putative protein functions (§5).

section we will first analyze the problem to directly use clas-
sical LDA in multi-label classification scenarios, followed
by applying our Multi-label Linear Discriminant Analysis
(MLDA) approach [26] in for protein function prediction.

3.1 Review of classical LDA
Classical LDA projects the original data from a high p-
dimensional space to a much lower r-dimensional subspace,
in which the classification task is much easier to perform
and the results are more robust. Let the projection of LDA
be

qi = UT
xi, (4)

where U ∈ R
p×r is the transformation matrix and qi ∈

R
r(r � p) is the projection of a data point xi in the low-

dimensional space, the goal of LDA is to find U such that
different classes are more separated in the projection space.
Let Q = [q1, . . . ,qn] ∈ R

r×n, we have Q = UTX .
For a single-label classification task, the training data

{xi}
n
i=1 are partitioned into K exclusive pattern classes

Π = {π1, . . . , πK} by prior knowledge, where πk corre-
sponds to the partition for the kth class and contains nk

data points. Thus, the between-class scatter matrix Sb and
within-class scatter matrix Sw are computed as follows:

Sb(x) =
K∑

k=1

nk(mk −m)(mk −m)T ,

Sw(x) =
K∑

k=1

∑
xi∈πk

(xi −mk)(xi −mk)
T ,

(5)

where
mk =

1

nk

∑
xi∈πk

xi (6)

is the class mean (class centroid) of πk and

m =
1

n

n∑
i=1

xi (7)

is the global mean (global centroid). Therefore, the total
scatter matrix St is computed as:

St =
n∑

i=1

(xi −m)(xi −m)T = Sb + Sw. (8)

π1 π2

π3

(a)

π1 π2

π3

a

c

b

(b)

Fig. 1. Examples of classi cation problems. (a) A traditional single-label
classi cation problem. Each data point clearly belongs to one cluster
only. (b) A typical multi-label classi cation problem. Some data points
belong to multiple classes. ⊕ denotes the data points belonging to both
class π1 and π2, ⊗ denotes the data points belonging to both class
π1 and π3, and the data points represented by ✳© belong to all three
classes. These data points with multiple labels cause the ambiguity in
scatter matrices calculations.

The optimization criteria of LDA is that U is chosen such
that data points from different classes are far away from
one another (maxSb) and data points from the same class
are close to each other (minSw). This leads to the standard
LDA optimization objective function as follows [25]:

max
U

J = tr
(
UTSbU

UTSwU

)
. (9)

Since tr (A/B) = tr
(
B−1A

)
= tr

(
AB−1

)
, the solution can

be obtained by applying the eigen-decomposition to matrix
S−1
w Sb where Sw is assumed to be nonsingular.

Ambiguity caused by data points with multiple labels
in classical LDA. Eqs. (5–9) summarize the classical LDA al-
gorithm, where the scatter matrices Sb, Sw, and St are well-
defined in single-label multi-class classification. However, in
multi-label classifications, the definitions are obscure. Figure
1(a) illustrates an example of traditional single-label classifi-
cation problems. The dataset has three different classes, with
training data points denoted by blue ◦, red +, and magenta
×. Black thick lines denote the decision boundaries, and
the background colors denote the decision regions of the
respective classes. In single-label classification, each data
point is uniquely assigned to one single class, thereby the
data scatters are clear. However, in multi-label scenario,
the decision regions overlap among one another and the
decision boundaries are ambiguous. The inter and intra class
scatters remain indistinct, because each data point could
belong to multiple classes at the same time. As shown in
Figure 1(b), for a typical multi-label classification problem,
besides the training points only associated to one class, ⊕
denotes the training points associated to both class π1 and
class π2, ⊗ denotes the data points associated to both class
π1 and class π3, and data points represented by ✳© have all
three class labels. In this case, how much a data point with
multiple labels should contribute to the data scatters is not
defined. Thus the scatter matrices defined in Eqs. (5–8) can
not be computed.
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3.2 Multi-label linear discriminant analysis
Classical LDA deals with single-label multi-class classifi-
cations, where the partitions of data points are mutually
exclusive. That is, πi ∩ πj = ∅ if i �= j. However this is no
longer held in multi-label classifications. In this section, we
present a multi-label LDA [26] for multi-label classification,
which is a natural generalization of classical LDA.

Instead of defining the scatter matrices from data points
perspective as in Eqs. (5–8) in classical LDA, we consider to
formulate them by class-wise:⎧⎪⎨

⎪⎩
Sb =

∑K
k=1 Sb(k)

Sw =
∑K

k=1 Sw(k)

St =
∑K

k=1 St(k)

(10)

Through Eq (10) the structural variances of the training
data are represented more lucid and the construction of the
scatter matrices is easier. Particularly, the ambiguity — how
much a data point with multiple labels should contribute to
the scatter matrices —p is avoided. Therefore, the multi-label
between-class scatter matrix is defined as:

Sb =
K∑

k=1

S
(k)
b , S

(k)
b =

(
n∑

i=1

Yik

)
(mk −m)(mk −m)T ,

(11)
the multi-label within-class scatter matrix Sw is defined as:

Sw =
K∑

k=1

S(k)
w , S(k)

w =
n∑

i=1

Yik (xi −mk) (xi −mk)
T
,

(12)
and the multi-label total scatter matrix is defined as:

St =
K∑

k=1

S
(k)
t , S

(k)
t =

n∑
i=1

Yik(xi −m)(xi −m)T , (13)

where mk is the mean of class k and m is the multi-label
global mean, which are defined as follows:

mk =

∑n
i=1 Yikxi∑n
i=1 Yik

, m =

∑K
k=1

∑n
i=1 Yikxi∑K

k=1

∑n
i=1 Yik

. (14)

Now we write the multi-label scatter matrices in a more
compact way in matrix form. First, let

X̃ = X −me
T , (15)

where e = [1, . . . , 1]T . Eq. (15) centers the input data for
multi-label classification, which is different from data cen-
tering in single-label classification by classical LDA where
X̃ = X

(
I − ee

T /n
)
.

Let W = diag(w1, . . . , wK), where wk =
∑n

i=1 Yik is the
weight of class k in scatter matrices calculation, we have

Sb = X̃Y W−1Y T X̃T . (16)

In single-label classification, wk = nk is the number of data
points in class k.

Let L = diag(l1, . . . , ln), where li =
∑K

k=1 Yik is the
number of the labels attached to data point xi, we have

St = X̃LX̃T . (17)

In single-label classification, L = I , because each data point
only belongs to one class.

Lemma 1. When applied into single-label classification, the
multi-label scatter matrices, Sb, Sw, and St, defined in
Eqs. (11–13), are reduced to their corresponding counter-
parts in classical LDA as defined in Eqs. (5–8).

From the above definitions, Lemma 1 can be easily
obtained. Most importantly, in classical LDA, St = Sb +Sw,
which is still held in multi-label classifications.

Theorem 1. For multi-label class-wise scatter matrices, S(k)
b ,

S
(k)
w , and S

(k)
t as defined in Eqs. (11–13), the following

relationship is held:

S
(k)
t = S

(k)
b + S(k)

w . (18)

Therefore, St = Sb + Sw .

Proof. According to Eq. (14), we have
∑n

i=1 Yikmk =∑n
i=1 Yikxi. So,

∑n
i=1 Yikmkm

T
k =

∑n
i=1 Yikmkx

T
i and∑n

i=1 Yikmkm
T
k =

∑n
i=1 Yikxim

T
k . From Eqs. (11–13), we

have:

S
(k)
t =

n∑
i=1

Yikxix
T
i +

n∑
i=1

Yikmm
T −

n∑
i=1

Yikxim
T −

n∑
i=1

Yikmx
T
i

=
n∑

i=1

Yikxix
T
i +

n∑
i=1

Yikmm
T −

n∑
i=1

Yikmkm
T −

n∑
i=1

Yikmm
T
k

S
(k)
b + S(k)

w

=
n∑

i=1

Yikmkm
T
k +

n∑
i=1

Yikmm
T −

n∑
i=1

Yikmkm
T −

n∑
i=1

Yikmm
T
k

+
n∑

i=1

Yikxix
T
i +

n∑
i=1

Yikmkm
T
k −

n∑
i=1

Yikxim
T
k −

n∑
i=1

Yikmkx
T
i

=
n∑

i=1

Yikmkx
T
i +

n∑
i=1

Yikmm
T −

n∑
i=1

Yikmkm
T −

n∑
i=1

Yikmm
T
k

+
n∑

i=1

Yikxix
T
i +

n∑
i=1

Yikxim
T
k −

n∑
i=1

Yikxim
T
k −

n∑
i=1

Yikmkx
T
i

=
n∑

i=1

Yikmm
T −

n∑
i=1

Yikmkm
T −

n∑
i=1

Yikmm
T
k +

n∑
i=1

Yikxix
T
i

Thus, S(k)
t = S

(k)
b + S

(k)
w . Theorem 1 is proved. �

The optimization objective of multi-label LDA is hence
defined in a similar way to Eq. (9) using the trace of ratio as
follwing:

max
U

JMLDA = tr
(
UTSbU

UTSwU

)
. (19)

Eq. (19) defines the proposed Multi-label Linear Discrim-
inant Analysis (MLDA) algorithm when scatter matrices,
Sb, Sw and St, are computed as in Eqs. (11–13). In real
applications, because the number of features of a dataset
is often greater than the number of data points, Sw could
be singular. Therefore in our implementation, we solve the
eigenvalue problem S+

wSbuk = λkuk, where S+
w is the

pseudo-inverse of Sw . By taking the eigenvectors corre-
sponding to the r largest eigenvalues, the transformation
matrix U is obtained and the classification tasks can be
performed on the projected data.
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3.3 �1-normalized MLDA
Our further analysis on MLDA in Section 3.2 shows that the
data points with multiple labels are not only over-counted
but also over-emphasized in scatter matrices calculations.

Over-counting. For example, because data point a in
Figure 1(b) has two labels, π1 and π2, it is used in both S

(1)
b

and S
(2)
b calculations. Because Sb = S

(1)
b + S

(2)
b + S

(3)
b , data

point a is used twice in the between-class scatter matrix Sb.
Similarly, data point c is used three times in both Sb and
Sw . In general, in MLDA data points xi with li labels is
used li times in the scatter matrices, which are over-counted
compared to the data points with single-label.

Over-emphasizing. As shown in Figure 1(b), data points
with multiple labels are usually far away from the class
centroids. Because the contribution of a data point to the
scatter matrix is proportional to its squared distance from
the corresponding centroid, e.g. the contribution of data
point xi to S

(k)
w is measured by (xi −mk) (xi −mk)

T .
Compared to data points with single label, the influence of
data points with multiple labels to the data scatters are over-
emphasized.

While over-emphasizing is intrinsic in all LDA tech-
niques and not easy to deal with, we correct the over-
counting problem by �1-normalization in the following way.
We define a new label matrix Ỹ ∈ R

n×K as:

Ỹik =

{
1/li if xi belongs to the k-th class,
0 otherwise,

(20)

such that
∑K

k=1 Ỹik = 1. Therefore, the contribution of each
data point to the scatter matrices is always weighted as 1,
regardless it is associated with multiple labels or only single
label.

With the definition of Eq. (20), Ỹ is the �1-normalized
label matrix. By replacing Y by Ỹ , the scatters matrices can
be computed in the same forms as in Eqs. (11–13). We call
them as �1-normalized multi-label scatter matrices, hence
�1-normalized MLDA (NMLDA) is defined in the same way
as in Eq. (19) using the �1-normalized multi-label scatters
matrices. In single-label classifications, li is always 1 and
NMLDA is also reduced to classical LDA with the following
Lemma:
Lemma 2. When NMLDA is applied into single-label clas-

sification, the multi-label scatter matrices, S̃b, S̃w, and
S̃t, are reduced to their corresponding counterparts in
classical LDA as defined in Eqs. (5–8).

Similar to Theorem 1, we also have:
Theorem 2. For multi-label class-wise scatter matrices in

NMLDA, S̃t = S̃b + S̃w is still held.

4 INCORPORATING NETWORK DATA
The recent availability of protein interaction networks for
many model species opens another area to predict protein
function using graph algorithms, and many computational
approaches have been developed [29]. In order to achieve
more accurate function predictions, we incorporate network
data and use Laplacian embedding [28] to convert the
graph data obtained from biological networks into vectors,
pi ∈ R

r , one for each protein. By concatenating them

with projected feature vector qi computed from MLDA or
NMLDA algorithm, we obtain a hybrid feature vector zi for
each protein as following:

zi =

[
qi

αpi

]
, (21)

where α is a tradeoff parameter and empirically selected as

α =

√∑
i,j,i�=j ‖qi−qj‖2

∑
i,j,i�=j ‖pi−pj‖2 , because KNN uses the Euclidean

distance in the hybrid feature space to make classification.
In the rest of this section, we derive pi and reveal its
enrichment from graph-cut perspective of view.

In this work, we download PPI data from BioGRID
(version 2.0.56) database [30] and focus on the Saccharomyces
cerevisiae species. By removing the proteins connected by
only one PPI, we have the same number of protein as
obtained from sequence database, i.e., we totally have
ñ = n + m proteins with n = 4403 annotated proteins
and m = 1988 unannotated proteins. There are 89452 PPIs
among these proteins.

Protein interaction network is routinely modeled as
a graph, G = (V , E). The vertices V represent proteins
{x1, . . . ,xñ}, and the edges E are weighted by an ñ × ñ
similarity matrix W with Wij indicating the similarity be-
tween xi and xj . In the simplest case, W is the adjacency
matrix of the protein-protein interaction (PPI) graph where
Wij = 1 if protein xi and xj interact, and 0 otherwise.
For the graph data with pairwise relationship W , Laplacian
embedding preserves the same relationships and maximize
the smoothness with respect to the intrinsic manifold of the
dataset in the embedding space by minimizing the following
objective [28]:

min JLap = min
P

tr
(
PT (D −W )P

)
, (22)

where PT = [p1, . . . ,pn] ∈ R
r×ñ are the embeddings of the

data points, and D = diag (d1, . . . , dñ), di =
∑

j Wij . Thus,
L = D − W is the graph Laplacian [31]. The solution to
this problem is well established in mathematics by solving
the eigenvalue problem, (D −W )vk = λkvk, where 0 =
λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues and vk are the
corresponding eigenvectors. Because u1 is a constant vector
[31], we use the first r non-trivial eigenvectors to construct
P , i.e., P = [v2, . . . ,vr+1]. Here, we select r = K − 1, same
as that in MLDA, such that the construction of zi in Eq. (21)
is balanced.

The true power of Laplacian embedding lies in that
it amounts to K-ways ratio-cut graph partition when K-
means clustering is performed on P [32]. Namely, the PPI
graph are partitioned into K exclusive parts according to
its topology. With this enhancement, the performance of the
classification conducted on the hybrid feature vectors zi is
further improved.

5 RELIABILITY RANK OF PUTATIVE FUNCTIONS
One of the primary goal of computational approaches to
predict protein function is to assist biologist to discover new
functional roles of proteins for experimental verification.
Therefore, instead of simply assigning a “yes” or “no” to
a prediction as in many existing approaches, a real-valued
reliability rank is often of great use in post-processing of
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proteomic analysis. For example, biologist may use the
reliability rank as testable hypothesis to conduct biological
experiments on highly-reliable putative functions, so that
the cost on utility of the expensive experimental equipments
can be minimized.

Quantitatively evaluating the reliability of a prediction is
usually not easy, because the underlying probability model
and the actual training and testing data distributions are
constantly changing for different biological functions. How-
ever, this problem can be intuitively resolved by borrowing
the idea in the computation process of LDA, because the
compactness a within-class scatter is a good measure of the
optimization by LDA. The closer a data point is from the
centroid of its predicted class, the more representative it is
for this class. Specifically, given the centroid for the kth class
as:

mk =

∑n
i=1 Yikzi∑n
i=1 Yik

, (23)

the reliability rank for a prediction {Yik}
n+m
i=n+1 is computed

as:
r(Yik) = e(−‖zi−mk‖

2). (24)

Apparently, the data points close to the centroid of its
predicted class has high reliability rank, and the data points
far away from the centroid has low reliability rank. In
the perfect case when an unannotated protein happens to
coincide with the centroid of a functional class, we have
100% confidence to assign the function to this protein.

6 RESULTS AND DISCUSSION

We evaluate the Multi-label Linear Discriminant Analysis
(MLDA) in function prediction for yeast proteins. The se-
quence data for the proteins are obtained from GenBank
[21] (Section 2.1), and the network data are downloaded
from BioGRID [30] (Section 4). The dataset used in our eval-
uations contains 6392 proteins, among which 4403 proteins
are annotated according to the FunCat annotation database
[22] and 1988 proteins remain unannotated (Section 2.2). We
focus on the main functional categories defined in FunCat
annotation scheme, and 17 functional classes are involved
in functional annotation for yeast species.

6.1 Improved discriminability by MLDA
The main purpose of MLDA is for feature reduction,
through which the data points in the projected space should
be more separable. Therefore we first evaluate its projection
effectiveness.

We use functional classes, “Metabolism” and “Protein
Fate”, for illustration, because these two functions have
the biggest number of annotated proteins as can be seen
in Table 1. We randomly pick up 150 proteins from each
functional class, and among the selected proteins there are
12 proteins are annotated with the both functions. Therefore,
we end up with 288 data points. We do not use all the
4403 annotated proteins, because too many data points will
fill up the visualization panel and mess up the illustration,
though the same conclusion can be drawn. We first project
these data points from their original data space (p = 203)
onto the 2D plane by principal component analysis (PCA)

(using the first two principal component coordinates and
PCA is used only for visualization purpose) as shown in
Figure 2(a). Clearly, the data points from the two classes
are mingled together and it is difficult to find a decision
boundary with high classification accuracy. We then run
MLDA on the whole dataset with all the 17 functions, and
project the same data points from the reduced data space
(r = 16) onto the 2D plane as shown in Figure 2(b). Here we
only use two classes in demonstration, because there are too
many proteins are annotated with more than one functions
and clear depiction for all the functional classes can only be
illustrated in a higher-dimensional space but not on the 2D
visualization plane. Obviously, data points in the two dif-
ferent classes are distinctly separated from each other as in
Figure 2(b). All these observations demonstrate that MLDA
is indeed an effective feature reduction algorithm, which
not only significantly reduces the computational complexity
(from 203 dimensions to 16 dimensions) of the classification
task but also improves the discriminability of the input data.
Therefore, through MLDA the subsequent classification can
be carried out on the projected data points more efficiently
and effectively.

6.2 Comparison with existing computational
approaches for protein function prediction
We evaluate the function prediction capability of the pro-
posed MLDA approach by comparing it against two well
known existing approaches: (1) functional similarity weight
(FS) approach [33] and (2) fusion kernel (FK) approach
[34], one baseline approach from biological perspective:
(3) majority voting (MV) approach [35], and two baseline
approaches from machine learning perspectives: (4) linear
discriminant analysis (LDA) [25] and (5) multi-label support
vector machine (ML-SVM) [36]. Besides, we also compare
our approach to three most recent approaches: (6) Laplacian
Network Partitioning incorporating function category Cor-
relations (LNPC) approach [37], (7) function-function corre-
lated multi-label protein function prediction over interaction
networks (FCML) approach [38], and (8) Maximization of
Data-Knowledge Consistency (MDKC) approach [16].

We use standard 5-fold cross validation (CV) method in our
performance evaluations. The proteins are divided into 5
equal-size groups randomly. One group is assumed to be
unannotated and the rest 4 groups are annotated. We run a
prediction methods to predict the functions for the kept-out
group of proteins. The predicted results are compared to the
true functions of these proteins. This is repeated 5 times to
keep each group as unannotated in turn, and final results
are averaged.

As in many previous studies, we choose precision and
F1 score as the prediction performance metrics. Let TP (true
positive) be the number of proteins which we correctly
predict to have a given function, FP (false positive) be the
number of proteins which we incorrectly predict to have the
function, and FN (false negative) be the number of proteins
which we incorrectly predict to not have the function. The
“precision” is defined as TP/(TP+FP), and the “recall” (also
known as “sensitivity”) is defined as TP/(TP + FN). In ad-
dition, we also use the “F1 score” to evaluate precision and
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(a) Projection from the original space (p = 203) onto the
2D plane.

(b) Projection from the reduced subspace (r = 17) by
MLDA onto the 2D plane.

Fig. 2. Projection of randomly selected data points from two functional
classes on the 2D plane. The red circles denotes the proteins only an-
notated with function “Metabolism”, the blue crosses denote the proteins
only annotated with function “Cell Fate”, and the black squares denote
the proteins annotated with the both functions.

recall together, which is the harmonic mean of precision and
recall: defined as (2×Precision×Recall)/(Precision+Recall).
F1 score is extensively used in the related works and other
domains such as information retrieval. Typically, improving
the precision of an algorithm decreases its recall and vice
versa, therefore F1 score is a balanced performance metric.
To measure the overall prediction performance, we use
average precision and average F1 score over all 17 main
functional categories to evaluate our algorithm.

FS-weight approach predicts protein function using the
protein interaction network and transfer functions to a
protein from its directly and indirectly connected neighbors.
We download the implementation codes from the authors’

web site and conduct the experiments on the PPI graph as
described earlier in Section 4. Because this approach does
not explicitly supply a threshold for prediction, we use the
one that gives the highest F1 score. FK approach use Semi-
Definite Programming (SDP) to combine heterogeneous
data sources for function prediction using Support Vector
Machines (SVM). A separate kernel is generated from each
data source using customized techniques. SDP is then used
to obtain an optimal combination of the kernels for SVM
learning. We build two kernels, one from protein sequences
and the other from the PPI graph. Instead of computing
the weights by ourselves, we use those computed by the
original work for a fair comparison. Again, we use the
threshold giving best F1 score to make function prediction.

MV approach assigns functions to a protein via its
connecting neighbors, which, though simple, proves to be
useful in the early ages because of the clear intuitions.
In our implementation, we make prediction using the top
3 frequent functions appearing one protein’s interacting
partners.

LDA approach [25] is one of the most broadly used
statistical learning method for dimension reduction, which
also motivates our work. We learn one projection for each
function and predict the functions for unannotated proteins
using 1NN in the projected space. ML-SVM [36] extends the
classical support vector machine (SVM) to deal with multi-
label data.

LNPC approach [37] considers protein function predic-
tion as a binary voting and FCML approach [38] simu-
lates protein function prediction as a electric flow, both of
which utilize the topology of a protein-protein interaction
network. MDKC approach [16] assign protein functions
by minimizing the differences between data networks and
knowledge networks, where the former refers to original
experimental measurements or results while the latter refers
to human-curated research findings recorded in well struc-
tured databases or documented in biomedical literatures.

We evaluate our proposed MLDA and NMLDA ap-
proaches in the following three ways. We first conduct clas-
sification using the projected sequence features by MLDA
(qi), and then make prediction on the hybrid features (zi)
constructed by projected sequence vectors (qi) by MLDA
and embedded graph vectors (pi). Finally we verify the
performance of NMLDA using the hybrid features con-
structed by its projected sequence features and the embed-
ded graph features. The classification is carried out by 1NN,
one function at a time. For each function, the classification
is conducted as a binary classification task.

Because we formulate protein function prediction as a multi-
label classification problem, we are more concerned with the
overall performance over all the functional classes. Table 3
presents the overall function prediction performance com-
parison of the compared approaches measured by average
precision and average F1 score. The results demonstrate that
the proposed MLDA and NMLDA approaches clearly out-
perform the other approaches, especially when they work
together with the embedded features obtained from net-
work data. Moreover, the advantage of NMLDA approach
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TABLE 3
Average precision and average F1 score by the compared approaches
on the main functional categories by FunCat annotation scheme. We
evaluate our propopsed MLDA and NMLDA approaches in three ways:
on projected sequence vectors by MLDA (qi) denoted as “MLDA”, on
hybrid features vectors constructed by projected sequence vectors (qi)
by MLDA and embedded graph features (pi) denoted as “MLDA +
graph”, and on the hybrid features constructed by the projected
sequence features by NMLDA and the embedded graph features

denoted as “NMLDA + graph”.

Approaches Average Precision Average F1 score

FS 32.84% 22.68%
FK 54.64% 39.01%
MV 30.12% 28.56%
LDA 50.11% 40.12%
ML-SVM 51.19% 41.22%
LNPC 49.20% 43.70%
FCML 54.83% 43.74%
MDKC 61.38% 42.17%

MLDA 60.30% 41.24%
MLDA + graph 63.68% 43.74%
NMLDA + graph 64.09% 43.97%

TABLE 4
Average precision and average F1 score by the compared approaches
on 60 randomly selected GO terms. We evaluate our proposed MLDA
and NMLDA approaches in three ways: on projected sequence vectors

by MLDA (qi) denoted as “MLDA”, on hybrid features vectors
constructed by projected sequence vectors (qi) by MLDA and

embedded graph features (pi) denoted as “MLDA + graph”, and on the
hybrid features constructed by the projected sequence features by
NMLDA and the embedded graph features denoted as “NMLDA +

graph”.

Approaches Average Precision Average F1 score

FS 35.11% 26.78%
FK 41.36% 332.3%
MV 34.66% 24.15%
LDA 43.33% 32.43%
ML-SVM 44.12% 33.15%
LNPC 40.15% 30.63%
FCML 46.12% 34.87%
MDKC 50.14% 38.42%

MLDA 51.54% 40.11%
MLDA + graph 55.61% 42.62%
NMLDA + graph 55.47% 43.07%

compared to MLDA approach justifies the �1-normalization
is necessary to alleviate the over-counting problem.

Besides evaluate our approach for protein functions de-
fined by Funcat annotation scheme, we also compare our
method against the counterparts when Gene Ontology (GO)
is used for annotation, which is more comprehensive than
the Funcat annotation scheme. We randomly pick up 30
terms from molecular function and biological process of GO
and use the selected 60 terms to annotate the same set of
proteins as above. The performance metrics are used and
results are reported in Table 4, which once again demon-
strate the effectiveness of our approach in protein function
prediction.

In addition, Figure 3 shows the class-wise prediction
performance. The results show that, besides the overall
performance, the proposed MLDA and NMLDA approach

(a) Precision.

(b) F1 score

Fig. 3. Performance of 5-fold cross validation for the main functional
categories in FunCat scheme by FS, FK, MV and proposed MLDA
approaches evaluated in three ways (same as in Table 3) on yeast
species.

consistently outperform the other approaches in most of
the individual functional classes, which again confirms the
effectiveness of the proposed algorithms.

6.3 Putative functions of unannotated proteins
Because one of the most important contribution of com-
putational approaches to biological research is to discover
and suggest putative protein functions for experimental
verification, we apply NMLDA (plus embedded graph data)
approach to infer functions for unannotated proteins. A list
of putative functions predicted by our algorithm with reli-
ability rank value greater than 0.7 are provided in Table ??
(supplied as supplementary information due to space). The
corresponding reliability rank values are also reported. For
example, we predict protein “YHL023C” to have function
“11” (Transcription) with reliability rank of 0.82 and func-
tion “32” (Cell Rescue, Defense and Virulence) with reliabil-
ity rank of 0.41, which means our our algorithm suggests
that protein “YHL023C” is more likely to be annotated with
function “11” rather than function “32”.

7 CONCLUSIONS AND FUTURE WORKS
In this paper, we addressed the issue of using classical LDA,
a famous feature reduction method in statistical learning,
in protein function prediction using protein sequences. The



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

former is by nature designed for single-label classification,
while the latter is an ideal incarnation of multi-label clas-
sification. Feature reduction is necessary in predicting pro-
tein function from sequence, because the original features
extracted from sequence data is of high dimensionality
and often contains irrelevant patterns, which makes the
classification inefficient and ineffective. Thus we applied the
Multi-label Linear Discriminant Analysis (MLDA) approach
[26] to deal with multi-label classification problems and
meanwhile preserve the powerful classification capability
of classical LDA. We presented a class-wise scatter matri-
ces computation scheme to avoid the the ambiguities in
scatter construction caused by the the data points with
multiple labels. We further extended MLDA to NMLDA
by employing �1-normalization to overcome the problem
of over-counting data points with multiple labels in scatter
matrices calculations, such that the contribution of a single
data point to the scatter matrices is always weighted as 1.
Using Laplacian embedding, we successfully incorporated
the biological network data into our method in a natural
and integral way, such that the prediction performance is
improved by taking advantage of the information from mul-
tiple different data sources. Motivated by the computation
process of LDA, we devised the reliability rank to assess
the confidence of putative functions, which may greatly fa-
cilitate the the post-proteomic processes. Through extensive
evaluations from different aspects, our proposed MLDA and
NMLDA approaches have demonstrated promising results,
which empirically confirms their usefulness.

We notice that the function prediction by integrating
network data with sequence data in our evaluation exhibits
enhanced performance, which hint us the integration of
heterogenous biological experimental data may help to im-
prove the predictive accuracy. Indeed, many computational
approaches have already been proposed to make use of
the information from multiple data sources through various
biological or statistical mechanisms. The fusion kernel (FK)
approach [34] used in our empirical evaluation is an good
example of such methods. Therefore, in our future work, we
will further develop our methods to leverage multiple types
of biological experimental data to achieve more meaningful
protein function predictions.
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